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Abstract. Polar Mesoscale Cyclones (PMCs), particularly their intense subset known as Polar Lows

(PLs), characterized by short lifespans of 3-36 hours and horizontal scales below 1,000 km, pose

significant hazards to polar maritime activities due to extreme winds exceeding 15 m s⁻¹ and wave

heights surpassing 11 meters. These intense weather systems play a critical role in modulating sea-ice

dynamics and ocean-atmosphere heat exchange. However, current understanding remains constrained20

by sparse observational records and overdependence on singular data sources (e.g., remote sensing or

reanalysis). To address these gaps, this study presents the Integrated Multi-source Polar Meso-Cyclone

Tracks (IMPMCT) dataset, a comprehensive 24-year (2001-2024) wintertime PMCs record for the

Nordic Seas. IMPMCT combines vortices tracking algorithms from ERA5 reanalysis with deep

learning-based detection of cyclonic cloud features in Advanced Very High-Resolution Radiometer25

(AVHRR) infrared imagery, while incorporating near-surface wind matching by Advanced

Scatterometry (ASCAT) and Quick Scatterometry (QUIKSCAT) measurements. The dataset contains

1,184 vortex tracks, 16,630 cyclonic cloud features, and 4,373 wind speed records, with

multi-dimensional attributes such as cloud morphology, core wind speed, and environmental advection

wind speed. Validation demonstrates a 70-90 % match rate with existing PLs track datasets while30

providing more complete cyclone life cycle trajectories, more intuitive cloud imagery visualization, and

a richer set of parameters compared to previous datasets. As the most comprehensive PMCs archive for

the Nordic Seas, the IMPMCT dataset provides fundamental data for advancing our understanding of

the genesis and intensification mechanisms, enables the development of enhanced monitoring and early

warning systems, supports the validation and refinement of polar numerical weather prediction models,35

and facilitates improved risk assessment and safety protocols for maritime operations. The dataset is

available at https://doi.org/10.5281/zenodo.15355602 (Fang et al., 2025).
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1 Introduction40

Polar Mesoscale Cyclones (PMCs) are mesoscale cyclonic weather systems frequently occurring

in polar front zones, open waters, or sea-ice edge regions in polar areas. They are often identified on

satellite imagery by comma-shaped or spiral cloud patterns. PMCs occur in all seasons but are most

active in winter, with a lifespan of approximately one day and horizontal scales of less than 1,000 km

(Harold et al., 1999). The most intense subset of these cyclonic systems, termed Polar Lows (PLs), are45

major hazardous weather phenomena in polar regions, characterized by average maximum wind speeds

exceeding 15 m s-1 and extreme values surpassing 30 m s-1. They can generate significant wave heights

over 11 meters (Rojo et al., 2019), posing severe threats to human activities and maritime safety in

high-latitude regions (Harrold and Browning, 1969; Orimolade et al., 2016). Additionally, PLs induce

rapid sea-ice changes and intensify ocean-deep convection through dynamic and thermodynamic50

effects, producing complex regional climatic impacts (Clancy et al., 2022; Condron and Renfrew, 2013;

Parkinson and Comiso, 2013). The Nordic Seas (Greenland Sea, Norwegian Sea, and Barents Sea)

serve as a critical oceanic gateway connecting the Arctic and the Atlantic Oceans, marking a primary

convergence zone for Atlantic and Arctic water masses and a key region shaping global circulation and

climate (Smedsrud et al., 2022). The complex meteorological and oceanographic conditions in this area55

make it the most frequent PLs occurrence region (Stoll, 2022). Consequently, studying mesoscale

cyclonic systems in the Nordic Seas holds significant value for Arctic maritime safety and climate

change research.

Remote sensing data are effective for observing such high-impact weather systems. Cyclonic

cloud morphology and surface wind fields serve as the primary criteria for distinguishing and60

categorizing PMCs and PLs. The former can be manually identified through visible or infrared

imageries from passive radiometers (e.g., Fig. 1), while the latter can be estimated using scatterometer

or microwave data. While PLs exhibit higher destructive potential and detection feasibility compared to

broader PMCs, current dataset development efforts have predominantly targeted PLs, leaving PMCs

relatively underrepresented in existing observational records. Blechschmidt et al. (2008) combined65

Advanced Very High-Resolution Radiometer (AVHRR) infrared imagery (Kalluri et al., 2021) with

wind speed data derived from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite

Data (HOAPS) (Andersson et al., 2010) to manually identify 90 PLs occurring in the Nordic Seas

between 2004 and 2005. Noer et al. (2011) utilized AVHRR infrared imagery, Advanced Scatterometer

(ASCAT), and Quick Scatterometer (QUIKSCAT) wind data to detect 121 PLs in the Nordic Seas over70

a decade (2000–2009). Smirnova et al. (2015) identified 637 PLs between 1995 and 2009 using Special

Sensor Microwave/Imager (SSM/I) data for atmospheric total water vapor (TWV) content fields,

near-surface wind speed fields, and AVHRR infrared imagery. Golubkin et al. (2021) employed

Moderate Resolution Imaging Spectroradiometer (MODIS) and ASCAT data to identify PLs over the

North Atlantic, compiling a catalog of 131 PLs between 2015 and 2017. In all PL lists derived from75

remote sensing data, the Rojo list (Rojo et al., 2015, 2019) is currently the longest temporally spanning

remote sensing-derived PLs track dataset, providing tracks of 420 PLs occurring in the Nordic Seas

from 1999 to 2019. It includes basic information such as cyclone location, size, cloud type,
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development stage, and maximum 10 m wind speed. The manually tracked datasets described above

have provided valuable PLs information, contributing to ongoing research efforts. However, the unique80

high-latitude geography of polar regions creates significant observational challenges. Polar-orbiting

satellites typically observe these regions at intervals ranging from tens of minutes to several hours,

resulting in temporal gaps that make it difficult for manual tracking datasets to capture complete

cyclone life cycles. Additionally, some PLs forming near sea-ice edges may exhibit distinct cyclonic

cloud features exclusively during their transition over moisture-rich open waters (Bromwich, 1991),85

implying that remote sensing datasets could potentially miss capturing the initial developmental stages

of such PLs. Consequently, while the Rojo list provides developmental pattern annotations for

individual polar lows, the objectivity and quantitative reliability of these annotations remain

constrained by the inherent limitations of remote sensing in achieving comprehensive characterization

of PL evolution throughout their complete lifecycle. Furthermore, the occurrence of polar night,90

coupled with low contrast between sea-ice/snow surfaces and overlying clouds, further limits the

detection capabilities of remote sensing (particularly visible-band remote sensing) methods for PLs.

Figure 1: Two AVHRR satellite images. (a) A PMC in Barents Sea. (b) A PL in Norwegian Sea. The yellow
stars mark the centers of these two cyclones.95

With the improved resolution of reanalysis datasets, their ability to characterize PLs has

progressively advanced (Laffineur et al., 2014; Smirnova and Golubkin, 2017), making them an

increasingly critical data source for constructing PLs track datasets. Researchers have employed

various combinations of identification criteria to detect PLs. For instance, Zappa et al. (2014) utilized

the difference between 500 hPa temperature and near-surface temperature to represent cold air outbreak100

characteristics during PLs formation, while utilizing maximum near-surface wind speed to indicate PLs

intensity, and 850 hPa relative vorticity to capture their cyclonic properties. Subsequent studies adopted

or adapted these criteria (Stoll et al., 2018; Terpstra et al., 2016; Yanase et al., 2016). Building on the

fifth-generation European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5) (Hersbach

et al., 2020), Stoll (2022) established a four-criteria linear-based combination defining PLs as intense105

mesoscale cyclones forming within polar oceanic air masses northward of the polar front. This

approach successfully reproduced 60-80 % of PLs from five manual PL lists, validating ERA5’s robust
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capability in PLs representation. However, ERA5 significantly underestimates near-surface wind

speeds within PL-affected regions (Belmonte Rivas and Stoffelen, 2019; Gurvich et al., 2022;

Haakenstad et al., 2021), limiting its ability to objectively capture PLs’ high-wind characteristics,110

thereby introducing notable limitations.

In summary, remote sensing and reanalysis datasets provide complementary perspectives on PLs’

characteristics, with the former capturing cloud morphology and the latter resolving meteorological

field distributions, highlighting their respective advantages. This complementary nature motivates the

integration of both data types to construct more comprehensive PL tracking datasets—a key objective115

of this study. Furthermore, existing datasets primarily focus on PLs, while weaker PMCs that share

similar cyclonic cloud features and environmental conditions lack comprehensive publicly available

track datasets. This disparity likely stems from the fact that PMCs generally have smaller average

intensities, shorter lifespans, and smaller scales compared to PLs, making them more difficult to detect.

Although some researchers have proposed PMC track datasets using either remote sensing120

(Verezemskaya et al., 2017) or reanalysis data (Michel et al., 2018; Pezza et al., 2016; Watanabe et al.,

2016), these approaches face significant limitations. Remote sensing-based datasets often have

inadequate temporal coverage or lack critical near-surface wind speed records (Condron et al., 2006),

while reanalysis-based datasets encounter challenges in developing effective identification criteria

without remote sensing validation. As a result, no universally accepted PMC identification standards125

currently exist (Michel et al., 2018). Notably, while PLs have been well-documented in relation to

large-scale circulation patterns such as the North Atlantic Oscillation (Claud et al., 2007) and

Scandinavian blocking (Mallet et al., 2013), the climatic impacts of PMCs remain insufficiently

investigated (Michel et al., 2018). Moreover, fundamental questions persist regarding the differences in

formation mechanisms between PMCs and PLs, and whether PMCs can transition into PLs under130

specific meteorological conditions. These knowledge gaps highlight the critical need to establish a

more comprehensive tracking dataset capable of capturing PMCs throughout their lifecycle. Such a

dataset would enable the complete characterization of these weaker polar mesoscale systems,

representing another key motivation for this study.

Based on the above analysis, this study aims to comprehensively integrate the advantages of135

reanalysis datasets in characterizing the dynamical and thermodynamic structures of polar mesoscale

weather systems and remote sensing data in capturing cloud morphology to establish a long-term PMCs

(hereafter, “PMCs” when used alone include “PLs”) track dataset in the Nordic Seas from 2001 to 2024.

This dataset will contain the tracks of the PMCs in reanalysis fields and remote sensing imagery, as

well as multi-dimensional attributes such as intensity, cloud morphology, and near-surface wind140

features. The objective is to provide a long-term, multi-attribute catalog of PMCs, offering reliable data

support for atmospheric and oceanic research in the Nordic Seas.

2 Data

2.1 AVHRR data

The Advanced Very High-Resolution Radiometer (AVHRR) (Kalluri et al., 2021) is mounted on145
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NOAA series meteorological satellites and MetOp series satellites. Since its launch with the TIROS-N

satellite in 1979, the sensor has continuously performed multiple daily observations of the Earth’s

surface. It measures reflected and emitted radiation from the Earth and its atmosphere, providing

detailed information about surface characteristics, clouds, and atmospheric properties. AVHRR is an

across-track scanning system with five spectral bands as shown in Table 1. It has a nadir spatial150

resolution of approximately 1.1 kilometers and a ±55.4° scan angle on the satellite, covering a ground

swath width of 2,800 km. However, the effective resolution depends on the scan angle, with optimal

image quality provided within the ±15° range.

In this study, infrared imagery used to observe cyclonic cloud features is derived from two Level

1B data products of the AVHRR (Kalluri et al., 2021): the GAC (Global Area Coverage) and LAC155

(Local Area Coverage) forth-band data. The GAC product provides down-sampled imagery

(approximately 4 km resolution) after onboard processing, selecting every third scan line and averaging

every fifth adjacent sample along the scan line. This resampling aims to ensure continuous global

coverage. In contrast, the LAC product records AVHRR data at its native resolution (1.1 km) without

resampling over specific orbital regions (primarily Europe and Africa), offering higher spatial160

resolution. All AVHRR data utilized herein are sourced from NOAA’s Comprehensive Large Array-data

Stewardship System (https://www.aev.class.noaa.gov/ (accessed on 18 July 2024)).

Table 1: AVHRR radiometer channel information.

Channel Wavelength(μm) Satellite Application

1 0.58-0.68 ALL satellites Surface albedo estimation

2 0.725-1.00 ALL satellites Water body delineation

3A 1.58-1.64
NOAA15-19/MetOP
A-C

Snow and ice cover identification

3B 3.55-3.93
NOAA8-19/MetOP
A-C

low-level clouds identification and surface
temperature

4 10.3-11.30 ALL satellites Cloud-top temperature and surface temperature

5 11.50-12.5
NOAA8-19/MetOP
A-C

Cloud-top temperature and surface temperature

2.2 ERA5 data

ERA5 is the fifth-generation global reanalysis dataset produced by the European Centre for165

Medium-Range Weather Forecasts (ECMWF), designed to provide high-quality, consistent estimates of

atmospheric, land, and ocean climate variables from 1950 to the present. It replaces the previous

ERA-Interim dataset (Dee et al., 2011) and is currently one of the most widely used reanalysis products.

ERA5 offers hourly data for atmospheric, land, and ocean variables, with a horizontal spectral

truncation of T639, corresponding to a global grid resolution of approximately 31 km. The atmosphere170

is resolved vertically using 137 levels extending from the surface to 80 km in height.

In this study, we utilize ERA5 reanalysis data spanning 2001-2024 during the extended winter

period (November-April), with a spatial resolution of 0.25° × 0.25°, covering the domain 50° N-85° N

in latitude and 40° W-80° E in longitude. This dataset is employed to track vortices and compute their
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evolutionary characteristics such as intensity and size.175

2.3 QuikSCAT/ASCAT data

This study further leverages QuikSCAT and ASCAT data to examine near-surface wind field

properties within the cyclone core and its surrounding ambient conditions. QuikSCAT, a

NASA-developed Earth-observing satellite, employs a Ku-band SeaWinds microwave scatterometer to

provide global measurements of ocean surface wind vectors. Similarly, ASCAT features a C-band180

microwave scatterometer aboard EUMETSAT-operated MetOp polar-orbiting meteorological satellites.

These advanced instruments are specifically engineered to deliver accurate, high-resolution, continuous

wind vector measurements under all weather conditions, offering comprehensive global coverage of

near-surface wind patterns.

We utilize Level 2 near-surface wind vector retrieval products from both instruments to analyze185

wind field characteristics during cyclone development, with both datasets featuring a spatial resolution

of 12.5 km. For QuikSCAT, a slice-based compositing technique integrates high-resolution

measurements derived from Level 1B data into 12.5 km wind vector cells. In contrast, ASCAT employs

a spatial box filter to minimize land contamination of microwave signals and enhance retrieval

accuracy in coastal regions. Both datasets are sourced from NASA’s Physical Oceanography DAAC190

(podaac.jpl.nasa.gov/ (accessed on 28 November 2024)). Notably, QuikSCAT data spans only

1999–2009, while ASCAT has remained operational since 2010. To ensure comprehensive temporal

coverage across the track dataset, the two products are utilized to construct datasets across different

time periods.

3 Methodology195

To establish a more comprehensive cyclone track dataset in the Nordic Seas, we first utilize ERA5

reanalysis data with stable spatiotemporal resolution to obtain all vortex tracks. In this process, a lower

vorticity maxima criterion is applied to extract vorticity perturbations within the reanalysis data.

Subsequently, vortex tracks and their merging and splitting processes are identified based on spatial and

boundary changes of vortices across consecutive time steps. For each vortex with available AVHRR200

data, we generate Vortex-Centered Infrared (VCI, mentioned in the following text) images to identify

corresponding cyclonic cloud features with a cyclone-detection deep-learning model. Finally,

near-surface wind fields derived from QuikSCAT/ASCAT are matched to characterize wind speeds

within cyclone cores and environmental wind fields features. The algorithm workflow is outlined in Fig.

2, with methodological details provided in subsequent subsections.205
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Figure 2: The workflow diagram. In the diagram, all methodologies are enclosed in dashed circular outlines,
while derived datasets are framed in solid rectangular boxes. The title of each swimlane denotes the data
utilized by all methods within that swimlane.

3.1 Objective algorithm for identifying and tracking vortices210

Sea-level pressure (Laffineur et al., 2014; Michel et al., 2018) and low-level relative vorticity

(Day et al., 2018; Stoll et al., 2021; Watanabe et al., 2016; Zappa et al., 2014) are the two most

common tracer variables for PMCs in reanalysis datasets. Existing studies demonstrate that high values

of low-level relative vorticity, compared to sea-level lows which are susceptible to synoptic scale

pressure fields, are more closely associated with actual cyclone positions and exhibit smaller biases in215

cyclone detection and intensity estimation (Stoll, 2022; Stoll et al., 2020; Zappa et al., 2014). Therefore,

we apply an objective mesoscale vortices-tracking algorithm to the 850 hPa relative vorticity fields in

ERA5 data to obtain hourly-resolution vortex tracks. This algorithm was first proposed by Shimizu and

Uyeda (2012) to track convective cells prone to merging and splitting, and has since been developed

and improved for PMC tracking (Watanabe et al., 2016; Stoll et al., 2021). It specifically comprises two220

components: hourly vortices identification and connection of continuous time step vortices.

3.1.1 Hourly vortices identification

When multiple vortices coexist within the same region of cyclonic shear flow, they often manifest

as a contiguous positive vorticity zone in the vorticity field (hereafter referred to as an

unpartitioned-vortex in the algorithm). The major challenge in vortex identification within vorticity225

fields is how to partition such regions (as exemplified in Fig. 3) into distinct isolated vortex regions.
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Figure 3: (a) 850 hPa relative vorticity field obtained by ERA5 data. (b) AVHRR infrared imagery
concurrent with the time step in (a). The shading represents 850 hPa relative vorticity smoothed over a
uniform 60 km radius and local vorticity maxima are marked by green star symbols, while regions enclosed230
by solid black contours denote the unpartitioned-vortex zone.

First, a uniform smoothing of 60 km is applied to the hourly 850 hPa relative vorticity field to

disconnect weak vorticity continuity zones and eliminate minor perturbation maxima. Subsequently, in

the smoothed vorticity field, regions enclosed by closed contour lines exceeding a minimum threshold

𝜁𝑚𝑖𝑛0 are identified as unpartitioned vortices. Thereafter, each unpartitioned-vortex (e.g., the area235

within the thick black solid line in Fig. 4) is subjected to isolated vortex extraction via the following

procedure:

Step 1: Identify local vorticity maxima exceeding the threshold 𝜁𝑚𝑎𝑥0, designated as vortex peaks with

relative vorticity values 𝜁𝑚𝑎𝑥 (e.g., in Fig. 4, three local vorticity maxima satisfy 𝑏 > 𝑎 > 𝑐 ).

Contour lines (gray thin solid lines) are then drawn at 10-6 s-1 intervals. Subsequently, the outermost240

contour line enclosing each individual or combined peak(s) is identified as the valley-line (black thin

solid lines, e.g., ζmin1 ≈ ζmin2 < ζmin3 ≈ ζmin4 in Fig. 4). These valley-lines enable the separation of

distinct vortex regions containing single or multiple peaks.

Step2: The isolation status of each vortex region is determined by assessing the relative disparity

between each valley-line and its internal maximum peak. As illustrated in Fig. 4: peak 𝑎 represents the245

strongest peak within its associated valley-line ζmin4, peak 𝑏 corresponds to the maximum within two

valley-line-enclosed areas ζmin1 and ζmin3 , and peak 𝑐 is the dominant peak within its respective

valley-line ζmin2 . The assessment proceeds systematically through vortex regions in descending order

of their valley-line vorticity magnitude (ζmin): for the maximum peak with relative vorticity value ζmax

within the valley-line-enclosed vortex region, if the criterion (ζmax - ζmin) ζmax > 𝛾 is satisfied (where250

𝛾 denotes the isolation vortex threshold), the area centered on this peak and bounded by the valley-line

is classified as an isolated vortex region. If a vortex region contains only one such isolated vortex

region, the isolated vortex will be expanded to encompass the entire domain. (in Fig. 4, the vortex

region enclosed by ζmin4 associated with peak 𝑎 fails to meet the isolation criterion. Conversely,

peaks 𝑏 and 𝑐 forming two distinct isolated vortex regions bounded by their respective valley-lines255

ζmin1 and ζmin2).

Step3: For all vortex points located within each unpartitioned-vortex but outside the isolated vortex
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regions, each point is assigned to the nearest isolated vortex based on geographical distance. Finally, all

isolated vortices in the each unpartitioned-vortex region are mutually designated as adjacent vortices

(e.g., vortices 𝑏 and 𝑐), serving as inputs for subsequent analysis of merging or splitting events. The260

area of each vortex is defined by its corresponding allocated isolated vortex region.

To maximize the inclusion of potential PMCs, we implement more lenient vortex detection

criteria compared to Stoll et al. (2021). The key modifications include: (1) reducing the vorticity peak

threshold ζmax0 from 1.5 to 1.2 (10-4 s-1), (2) lowering the vortex boundary threshold ζmin0 from 1.2 to

1.0 (×10⁻⁴ s⁻¹), and (3) decreasing the isolated vortex threshold 𝛾 from 0.25 to 0.15. These relaxed265

criteria enable the identification of weaker-intensity vortices and further extend the lifecycles of vortex

tracks. For splitting or adjacent vortices, the smaller 𝛾 value makes the precursors of splitting more

discernible and reduces the likelihood of erroneous merging during adjacency processes.

Figure 4: Vortex identification algorithm example. The black thick solid lines ζmin0 represent the270
unpartitioned-vortex border. The vorticity peaks 𝒂 , 𝒃 , and 𝒄 are three detected vorticity local maxima
within this unpartitioned-vortex. The thin black solid lines from ζmin1 to ζmin4 in Step 1 denote vortex
valley-lines that divide single or multiple peak regions. After vortex isolation assessment in Step 2, the
retained valley lines ζmin1 and ζmin2 for peaks 𝒃 and 𝒄 form the initial boundaries of their respective
isolated vortices, while vortex 𝒂 is classified as non-isolated, with its boundary shown as a dashed line. In275
Step 3, the pale pink regions outside the isolated vortices are further allocated to vortices 𝒃 and 𝒄.

3.1.2 Connection of continuous time step vortices

Based on the results of hourly vortices identification, the introduction of steering wind is

employed to estimate the movement of vortices. The steering wind is computed by averaging wind

fields within a 450 km radius around the vortex center at 550 hPa, 700 hPa, and 850 hPa, which is280

statistically proven to have minimal bias (Yan et al., 2023). Specifically, for a vortex at a given time

step, its ideal point after experiencing a time step under the steering wind influence is first calculated A

search radius of 180 km is then applied around this estimated location to facilitate vortex tracking in

subsequent time steps.. Subsequently, the (a) nearest neighbor principle or (b) maximum area overlap

principle (as shown in Fig. 5) is applied to connect vortices between two consecutive time steps, when285

vortices exist within the estimated region, the nearest vortex is connected; otherwise, the vortex with

the largest area overlap within the region is selected for connection. Finally, if the distance between the
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centers of vortices to be connected in adjacent time steps exceeds 200 km and the vorticity of the

vortex center at next time step is less than 1.5 × 10-4 s-1, the connection is terminated to minimize

spurious connections.290

Figure 5: Schematics of continuous time step vortices connection

Additionally, if no connectable vortices are detected in adjacent time steps, the vortex is deemed

to cease activity at that time step. Under the assumption of constant centroid positions during splitting

and merging (Shimizu and Uyeda, 2012), if a vortex is contiguous to other vortices at its start (end)295

track point, it is considered to have been generated (terminated) via splitting (merging). As shown in

Fig. 6, in two simplified vortex motion scenarios, vortex 𝑏 begins splitting and merging at the t3 time

step.

Figure 6: The schematic diagram illustrates two vortices splitting and merging processes. The t1 to t4300
represent four consecutive time steps. The red/ blue arrow indicates the direction corresponding to the
splitting/ merging process of two vortices. The colored regions and solid lines represent isolated vortex
regions and their boundaries. Gray solid lines show contour lines of the 850 hPa relative vorticity field, and
black solid lines indicate the unpartitioned-vortex boundaries. The blue dashed line indicates that the vortex
𝒃 is not yet an isolated vortex at time t2.305

3.2 Matching SLPminimum

While vortices often fail to produce closed isobars in SLP fields due to interference from

background pressure gradients, their atmospheric influence can still be quantified through detectable

SLP minima. Notably, certain polar lows originate within upper-level cold-core systems (known as

“cold low types”) frequently generate deep convection and produce substantial near-surface impacts310

(Rasmussen, 1981; Businger and Reed, 1989). To systematically capture these characteristics, the SLP

field is first smoothed using Gaussian filtering with a radius of 50 km to suppress noise. Subsequently,

the SLP minimum point located within a 150 km radius of the nearest vortex centroid is designated as

the SLP center for that vortex.

3.3 Detection and extraction of cyclonic cloud characteristics315
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Building upon the lenient vorticity identification criteria previously established, a substantial

population of vortex tracks have been identified using reanalysis data, including not only cyclonic

systems but also terrain-induced shear flows, low-pressure troughs, and small-scale atmospheric

disturbances. To validate whether these vortices belong to the PMCs, AVHRR infrared imageries are

further employed for verification. This process begins with temporal matching of satellite overpasses to320

vortex track timesteps, followed by generation of Vortex-Centered Infrared (VCI) images through

linear interpolation of infrared data onto a geographically-referenced 801×801 grid coordinate with 2

km resolution, centered on each vortex center (Fig. 7c and Fig. 7d). The coordinate transformation

employs the formulas:

𝑙𝑎𝑡 𝑥, 𝑦 =
𝑦

2𝜋𝑅
+ 𝑣𝑜𝑟𝑡𝑙𝑎𝑡 , 𝑥, 𝑦 ∈ −800, − 798, …, 798,800 (1)325

𝑙𝑜𝑛 𝑥, 𝑦 =
𝑥

2𝜋𝑅∙𝑐𝑜𝑠 𝑣𝑜𝑟𝑡𝑙𝑎𝑡
+ 𝑣𝑜𝑟𝑡𝑙𝑜𝑛, 𝑥, 𝑦 ∈ −800, − 798, …, 798,800 (2)

The coordinate transformation utilizes vortlon and vortlat as the longitude and latitude of the original

coordinate grid, corresponding to either the vortex center at the given timestep or the VCI image center.

This approach implements an equirectangular projection that provides a first-order approximation of

geographic coordinates within the vicinity of the origin point.330

The VCI images enable comprehensive analysis of cloud features within a 1600 km×1600 km

domain centered on each tracked vortex position, providing an optimal spatial scale that captures the

majority of PMCs while simultaneously accommodating larger-scale extratropical systems advected

into Arctic regions. By transitioning from broad-scale satellite observations to these precisely localized

domains, this imagery method significantly enhances the spatial correspondence between335

vorticity-derived tracks and cloud features, with particular sensitivity improvement for smaller-scale

and shallower cyclones. Meanwhile, the georeferenced framework of VCI images provides two critical

analytical capabilities: first, it enables direct quantification of cyclone dimensions through the

standardized geographic grid; second, it allows precise measurement of positional discrepancies

between observed cloud systems and modeled vortices through center-to-center displacement vectors.340

Furthermore, VCI images are also generated for two-time steps before the start and after the end of

each vortex track. This allows us to capture the initial formation and dissipation stages of PMCs that

are not adequately represented in vorticity fields, enabling users to better evaluate the representation of

PMCs.
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345
Figure 7: Two examples of VCI image generation. For the two vortices shown in (a), the AVHRR IR image
(b) reveals a polar low located to the east of vortex 1 and vortex 2. This polar low exists simultaneously in
the VCI images centered on vortex 1 and vortex 2 (c, d). The shading in (a) represents 850 hPa relative
vorticity smoothed over a uniform 60 km radius, with gray contour lines indicating sea-level pressure at 10
hPa intervals. The centers of vortex 1, vortex 2, and the polar low are respectively marked by green, red,350
and yellow stars.

To further extract cyclonic cloud features corresponding to vortices from the vast collection of

VCI images, the YOLO (You Only Look Once) object detection algorithm is employed to automate this

process. Object detection is a computer vision task that uses neural networks to locate and classify

objects within images. The YOLO series of algorithms (Redmon et al., 2016), characterized by high355

efficiency and accuracy, has become prominent in real-time object detection tasks across various fields,

from agriculture to healthcare. In this track dataset construction, the YOLOv8 framework is adopted to

automatically extract cyclonic cloud morphology features, including cloud type classification (spiral

cloud or comma-shaped cloud), center coordinates, and an oriented bounding box enclosing the

cyclone.360

Figure 8 illustrates typical cyclonic cloud morphologies, the most common comma-shaped cloud

structure is shown in Fig. 8a, where the head is typically composed of a tall and smooth cirrus shield

surrounding a dark, nearly cloud-free center. Ripple-like wave patterns sometimes appear at the edge of

the head, indicating significant wind shear within the cyclone. Fig. 8d presents the typical spiral cloud
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morphology, characterized by one or more convective cloud spiral bands encircling the circulation365

center. These spiral bands are occasionally predominantly composed of cellular clouds. Intermediate

baroclinic forms illustrated in Fig. 8b and Fig. 8c represent transitional stages between comma and

spiral types, sharing structural similarities with occluded extratropical cyclones but at reduced

horizontal scales, and are consequently classified within the spiral category. Additionally, the analytical

framework of oriented bounding box is also introduced that provide quantitative measures of cyclone370

scale, with the long axis aligned parallel to the tail cloud band and the short axis tangent to the cloud

head. While conventional approaches estimate cyclone size using the mean axis length (Smirnova et al.,

2015), this dataset deliberately provides separate measurements of both axes to account for potential

overestimation caused by the connection of tail cloud band of cyclones and long cloud bands of

mesoscale-front, thereby enabling researchers to make more precise assessments of true cloud coverage375

dimensions.

Figure 8: Different cyclonic cloud morphologies in four VCI images: (a) comma-shaped cloud; (b), (c) and
(d) spiral clouds. The yellow/blue bounding boxes and stars respectively denote the oriented bounding boxes
and center positions of comma-shaped/spiral cyclones.

To identify the aforementioned cyclonic cloud features, the YOLOv8-obb-pose model is

configured using the YOLOv8 model framework (Jocher et al., 2023), which combines oriented object

detection (obb) and keypoint detection (pose). Specifically, a branch for keypoint prediction is added to

the decoupled head module of the YOLOv8-obb model. This enables the new YOLOv8-obb-pose380

model to simultaneously perform automatic detection of cyclone type, center position, and oriented

bounding box. The network architecture of the YOLOv8-obb-pose model, as shown in Fig. 9,

comprises three main components: Backbone, Neck, and Head. The Backbone uses the CSPDarknet
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structure, which includes Conv Block (basic convolutional units for feature extraction), C2F Block

(enhancing multi-scale and multi-dimensional feature extraction), and SPPF (capturing hierarchical385

contextual information). The Neck employs the PAFPN (track Aggregation Feature Pyramid Network)

to construct a feature pyramid of VCI images, enabling multiscale feature fusion. The Head adopts a

decoupled architecture with parallel branches for extracting object category (cyclone type), center

coordinates, and oriented bounding box parameters (e.g., length, orientation).

During the model training process, we first construct a manually annotated dataset to train the390

YOLOv8-obb-pose model. Particular attention is given to maintaining consistent oriented bounding

box annotations and center point positions across similar evolutionary phases of cyclonic cloud

morphologies to ensure prediction stability. To optimize the trade-off between detection efficiency and

accuracy, we implement an iterative training protocol involving successive cycles of prediction, manual

correction, and retraining using VCI images. As detailed in Table S1, the model achieves competitive395

performance metrics on the validation set following this optimization process. The final

YOLOv8-obb-pose implementation demonstrates robust capabilities in both cyclone detection and

center localization tasks, satisfying requirements for practical applications.

Figure 9: YOLOv8-obb-pose model schematics.400

3.4 Validation of the vortex tracks

Each series of VCI images based on vortex track provides spatiotemporal neighboring local

infrared cloud imagery that follows the vortex’s movement. After extracting cyclonic features from

VCI images, whether a vortex track corresponds to a cyclone evolution process is determined by

proximity matching between the cyclone center detected in each VCI image and the vortex center. The405

following steps ensure that each VCI image only retains a cyclone uniquely matched to a vortex track

point:

Ⅰ Uniqueness: As illustrated in Fig. 7, spatially proximate vortices in reanalysis data can result in
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multiple detections of the same cyclone across corresponding VCI images. To eliminate duplicate

records, we establish a selection criterion: for any cluster of detections originating from the same410

AVHRR infrared scan (where cyclone centers are separated by less than 50 km), only the cyclone

whose center is closest to the VCI image center is retained.

Ⅱ Proximity: Each VCI image retains only the cyclone whose center is nearest to the VCI image center

and within 250 km of it.

Further, we extend the point-to-point matching to the track-to-track. When points of a vortex track415

are continuously matched with a series of cyclones in VCI images over four hour or longer time-steps

with an average matching distance less than 150 km, the vortex track is preliminarily identified as a

PMC track associated with the cyclone evolution process (as shown in Fig. 10)

Figure 10: (a) A matched vortex track and cyclone track and (b) partial corresponding VCI images. For (a),420
blue solid line represents the vortex track at hourly resolution, while grey solid line with green points
depicts the cyclone track points formed in VCI images that correspond one-to-one with vortex points. The
color of the track points indicates the magnitude of relative vorticity at each vortex point. For (b), the
cyclone develops sequentially from left to right and top to bottom, with scan intervals between images
approximately six hours apart.425

3.5 Matching cyclone-related max wind and environmental near near-surface wind

When cyclonic cloud features are detected in VCI images, near-surface wind speeds over the

ocean are further matched to estimate their intensity. According to existing definitions (Rasmussen and

Turner, 2003), PLs typically produce high near-surface wind speeds exceeding 15 m s⁻¹ (gale force),

with high-wind-speed regions concentrated in narrow cloud bands linked to the eye wall or intense430

convective zones encircling the center. In contrast, relatively weaker PMCs generally fail to penetrate

the temperature inversion layer above the marine mixed layer, resulting in smaller near-surface wind

speeds (Noer et al., 2011).

However, while environmental advection speed is not mentioned in existing definitions, some

weaker PMCs forming during cold air outbreaks often exhibit wind speed maxima exceeding 15 m s-1435

due to the cold air advection speeds, which are frequently subjectively selected to avoid

misclassification as PLs (Wilhelmsen, 1985). This underscores the importance of environmental

advection speed as a key environmental factor in studying such systems. In this study, we incorporate

environmental advection speed into the track dataset using a cloud-scale-based search radius method to
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facilitate user reference.440

For each VCI image, ASCAT/QuikSCAT wind speed data is selected for matching to generate the

cyclone core maximum near-surface wind speed and environmental advection wind speed when the

time difference between the wind data and VCI image scan is less than 30 minutes. Given that the

majority of PLs have movement speeds below 13 m s-1 (Rojo et al., 2015; Smirnova et al., 2015), the

representative error caused by this 30-minute time window is considered negligible. For the matched445

wind speed data, we establish two wind speed search radii surrounding the cyclone center, which are

significantly correlated with the cyclone cloud system scale, to distinguish cyclone core near-surface

wind speeds and environmental advection wind speeds. The short search radius is defined as the

distance from the cyclone center to the nearest short edge of its bounding oriented box, confining the

wind speed search area to the high-wind-speed region near the cyclone’s head, with the maximum wind450

speed within this area designated as the cyclone’s max wind speed. The long search radius is set as the

distance from the cyclone center to the farthest short edge of the bounding oriented box, used to sample

the environmental wind field surrounding the cyclone. To minimize influence from the cyclone core’s

strong winds, the 75th percentile of all wind speed data within the long search radius is adopted as the

environmental advection speed (reference value).455

For data users, environmental advection speed provides additional characteristics of cyclone

intensity. When the difference between the cyclone’s maximum wind speed and the environmental

advection speed is positive and large, it indicates the cyclone possesses a higher destructive potential,

whereas a negative or smaller difference suggests the cyclone’s maximum wind speed is dominated by

advection speed. The former scenario is exemplified in Fig. 11a, where a strong wind speed zone far460

exceeding the cold air advection speed is evident at the cyclone’s head, highlighting the cyclone’s

significant impact on near-surface wind conditions. Conversely, Fig. 11b demonstrates a cyclone

lacking a well-developed cyclonic circulation, instead exhibiting wind characteristics consistent with

the environmental wind field.

465
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Figure 11: VCI images overlaid with near-surface wind speeds for cyclones exhibiting strong (a) and weak
(b) local impacts on near-surface wind conditions. Color shading represents QuickSCAT-measured 10m
near-surface wind speeds, with green arrows indicating corresponding wind vectors. Yellow borders denote
the cyclones’ bounding oriented box. Blue and red circular borders respectively represent the short and
long search ranges. Yellow and red stars indicate the cyclone center and maximum wind speed point470
locations.

4 Results and discussion

Our analysis begins by applying a vortex tracking algorithm to reanalysis data, which identifies

57,688 vortex tracks. Through validation with VCI images, we confirm 1,184 cyclone-related vortex

tracks containing 16,630 distinct cyclone cloud features. Subsequent analysis of surface wind speed475

characteristics reveals 4,373 instances with measurable wind patterns, including 845 tracks where

maximum wind speeds exceeded the 15 m s⁻¹ threshold. These validated 1,184 vortex tracks and their

associated remote-sensing images constitute the IMPMCT track dataset. The accuracy of IMPMCT is

rigorously evaluated through comprehensive comparisons with existing manually identified and

reanalysis-based track datasets.480

First, to validate the accuracy of the vortex track datasets obtained from the vortices tracking

algorithm, they are compared with the manually identified PL lists published by Noer et al. (2011),

Rojo et al. (2019), and the objectively derived PL track datasets from reanalysis data by Stoll (2022).

All reference datasets are spatially and temporally constrained to match our tracks, with only tracks

persisting for more than 3 hours retained. We implement the following matching criteria: a vortex track485

is considered matched with a PL track when more than 50 % of temporally coincident track points

(within ±1 hour) are located within a 150 km radius (applying an 80 % threshold for Stoll's dataset). A

vortex track is allowed to match multiple PL tracks from reference datasets, provided that these PL

tracks have no overlapping segments and each PL track is uniquely paired with its nearest vortex track.

As presented in Table 2, the validation results demonstrate strong agreement with Stoll’s dataset,490

confirming the robustness of our vortex tracking algorithm; not only that, we achieve higher matching

rates with manual PL lists by using lower vortex identification thresholds, which to some extent further

demonstrates the enhanced representation capability of ERA5 reanalysis data for PLs characterization.

Table 2: the matching rate of the reanalysis-based track dataset for IMPMCT generation compared to other
PL track datasets.495

PL tracks Time period
Tracks in Nordic Sea with
life exceeding three hours

ERA5 matched
Matched
fraction %

Noer 2002-2011 114 100 87.72

Rojo 2000-2019 370 259 70.00

Stoll 2000-2020 3179 2881 90.63

After ensuring the validity of the reanalysis-based vortex track dataset for IMPMCT generation,

we further analyze the reliability of vortex properties in IMPMCT by comparing three characteristic

parameters (850 hPa relative vorticity, SLP center, and vortex equivalent diameter) with those provided
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by Stoll’s dataset, along with the distance between vortex centers across the two datasets. IMPMCT500

retained 678 matched tracks with Stoll’s dataset. As shown in Fig. 12a, among the matched tracks,

90 % of vortex points remain within 50 km of each other at the same time step. Additionally, the

average absolute differences of the three vortex properties at these proximate track points remain small:

1.09× 10-5 s-1 for relative vorticity, 0.43 hPa for sea-level pressure, and 23.21 km for vortex equivalent

diameter. Additionally, vortex property differences increase with distance, indicating that discrepancies505

between IMPMCT and Stoll tracks stem from differing identification thresholds. To further

demonstrate that such discrepancies are not errors, we calculate the standard deviation of vortex

properties across three consecutive time steps for each track and computed track-wide averages. If the

calculated property standard deviations remain low, it indicates stable variations in vortex properties

along the track, suggesting reliable track identification. Fig. 12 (b), (c) and (d) show the track-averaged510

local standard deviations of the three vortex properties for IMPMCT and Stoll datasets. The local

variabilities in IMPMCT tracks generally align with Stoll’s variabilities and are even smoother in some

cases.

Figure 12: Distribution of differences in three vortex properties and their track-averaged local standard515
deviations at co-located hourly track points between matched IMPMCT and Stoll tracks. The boxplot in (a)
shows property differences as a function of spatial deviation distance between matched track points. The
red numbers above the x-axis indicate the count of track point pairs in each distance bin. Each boxplot’s
y-axis scale corresponds to the color of its respective property (green: relative vorticity, blue: sea-level
pressure, red: vortex diameter). Frequency histograms and fitted curves of track-averaged local standard520
deviations for the three properties are displayed in (b) relative vorticity, (c) sea-level pressure, and (d)
vortex diameter.

IMPMCT uses hourly-resolution vortex tracks from reanalysis data as a supplement to cyclone

tracks. The correspondence between vortex and cyclone tracks is established solely through continuous

spatiotemporal matching of their respective centers. To ensure the accuracy of this correspondence, we525

perform subjective validation to confirm that each cyclone track does not incorporate extraneous

cyclonic processes. Notably, while the average matching distance between vortex and cyclone tracks is
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constrained within 150 km, approximately 95 % of track pairs have average matching distances below

100 km (as shown in Fig. 13), demonstrating strong consistency between cyclone and vortex tracks.

530
Figure 13: Probability distribution of distances between matched cyclone-vortex points (green) and
track-average distances (blue).

The cyclone properties in IMPMCT primarily include cyclone scales and maximum core

near-surface wind speeds. These properties are evaluated through comparison with the Rojo list. For

cyclone scale validation, we compare the diameter from the Rojo list with the approximate cyclone535

scale in the IMPMCT dataset (calculated as the average of cyclone width and length). We match

cyclone tracks between IMPMCT and Rojo list based on the following criteria: the nearest cyclone

centers are matched if their distance is less than 120 km and their central scan times are within 60

minutes. A cyclone track pair is deemed matched if the number of matched points exceeds half the total

points of a PL track in the Rojo list. Comparisons of cyclone cloud scale and maximum wind speeds540

between the matched time periods are shown in Fig. 14. Despite fewer matched tracks due to

differences in data sources, the cyclone size and wind speed attributes between IMPMCT and Rojo lists

remain largely consistent. Considering the differences in remote sensing data and subjective criteria, we

consider such discrepancies reasonable. Additionally, since remote sensing images of cyclones are

provided in the dataset, users can conveniently verify the accuracy of cyclone properties and apply545

appropriate corrections based on their specific use cases.
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Figure 14: Frequency distribution of bias in (a) Track-max near-surface wind speed and (b) diameter
between matched cyclones in the Rojo and IMPMCT datasets (Rojo minus IMPMCT). The cyclone
diameter in IMPMCT is calculated as the average of the width and length of the bounding box enclosing the550
cyclone.

The comprehensiveness of the dataset is constrained by the cyclone representation capabilities of

ERA5 reanalysis and the availability of remote sensing data. Since the number of in-orbit satellites

carrying the AVHRR sensor peaked around 2013, the IMPMCT track dataset includes the highest

number of tracks during this period. Additionally, due to the use of more lenient identification555

thresholds, IMPMCT tracks typically include longer life compared to the Stoll dataset. The extended

portions of these tracks may include: weak vorticity periods during the early/late stages of cyclone

development or the vortices pass over land/sea-ice, or re-development processes of vortices after

interacting with blocked extropical cyclones or frontal zones. If users require only the core

development phases of tracks, they should select segments based on vortex properties that represent the560

system’s core development. The dataset also includes some tracks with high vorticity at their start/end

points, which may arise from splitting/merging events or jumps of the vortex center position during

tracking.

The dataset does not explicitly distinguish between PMCs and PLs due to the time-sparse wind

speed data, particularly when the cyclone’s wind speed at a given time step falls below the 15 m s-1565

threshold. In such cases, it is impossible to determine whether the cyclone is a PMC or merely in a

weaker phase of a PL. Further expert analysis using additional criteria is required to differentiate these

categories. The VCI images are derived from geographical grids calculated using the Haversine

formula, so the representativeness of grid points for actual distances decreases with increasing latitude

and distance from the origin. However, given that most PMCs are located below 80° N latitude and570

have scales smaller than 500 km and distance from grid origin less than 150km, cyclone features

extracted from VCI images remain sufficiently accurate. Due to the low resolution of AVHRR infrared

images at scan edges, a significant portion of VCI images appear blurred. However, these images are

retained as long as cyclonic features remain recognizable, prioritizing the preservation of high temporal

resolution for cyclone track records. Additionally, while the YOLOv8-obb-pose model facilitates575

detection and feature extraction of cyclonic cloud characteristics in VCI images, the process still

involves subjective steps to ensure continuity in cyclone features (e.g., size, type, and position). This

implies that objective methods for constructing multi-parameter PMC track datasets remain

underdeveloped. Consequently, cyclone-evolution-aware deep-learning tracking algorithms could
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further enhance the efficiency of track construction.580

5 Code and data availability

The IMPMCT dataset described in this paper is freely accessible on Zenodo via the following link:

https://doi.org/10.5281/zenodo.15355602 (Fang et al., 2025), accompanied by comprehensive

documentation. All code is developed in Python and stored at:

https://github.com/thebluewind/IMPMCT.585

6 Conclusion

The Integrated Multi-source Polar Mesoscale Cyclone Track (IMPMCT) dataset represents a

major advancement in the study of polar mesoscale cyclonic systems. By integrating ERA5 reanalysis,

AVHRR infrared imagery, and QuikSCAT/ASCAT wind data, this dataset provides a comprehensive

record of 1,184 vortex tracks, 16,630 cyclonic cloud features, and 4,373 wind speed observations590

across the Nordic Seas (2001-2024). This integrated approach overcomes key limitations of previous

single-source datasets by enhancing detection sensitivity for weaker polar mesoscale cyclones (PMCs),

capturing complete lifecycle evolution from genesis to dissipation, and providing simultaneous cloud

morphology and wind fields observations. Rigorous validation against established datasets (Stoll et al.,

2022) confirms IMPMCT’s accuracy, demonstrating 90 % spatial consistency with track points595

alignments within 50 km and minimal parameter discrepancies including a 1.09×10-5 s-1 mean absolute

difference in relative vorticity and 0.43 hPa mean absolute difference in sea-level pressure.

IMPMCT could serves as a critical benchmark for evaluating high-latitude climate model

performance, a unique case library for comparative studies of PLs and PMCs regarding their formation

mechanisms, intensity thresholds, and sea-ice interaction dynamics, and an essential resource for600

improving polar maritime hazard forecasting. While representing a major step forward, IMPMCT’s

coverage remains constrained by satellite data availability, highlighting the need for future expansion to

pan-Arctic domains as satellite coverage improves and development of more objective cyclone

classification algorithms.
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